- Energy storage.
- Muscle contraction.
- Cell-cell recognition and signaling.
- Oxygen transport.
No category found.
- Independent polypeptide chains in a multimeric protein.
- Regions of a protein that fold independently and often have specific functions.
- Localized areas of alpha-helices and beta-sheets.
- The entire three-dimensional structure of a protein.
- Genetic information storage.
- Long-term energy storage and structural support.
- Catalysis of biochemical reactions.
- Cellular signaling.
- Denature most other enzymes.
- Inhibit all protein activity.
- Promote strong hydrogen bonding.
- Lead to polymerization of substrates.
- Slight changes in temperature within its optimal range.
- Binding of a competitive inhibitor.
- Extreme changes in pH or temperature, leading to permanent disruption of its active site.
- Short-term exposure to high substrate concentration.
- Primary only.
- Secondary only.
- Tertiary and quaternary.
- Primary and secondary.
- Transfer RNA (tRNA).
- Ribosomal RNA (rRNA).
- Messenger RNA (mRNA).
- Aminoacyl-tRNA synthetase.
- Carbohydrates.
- Lipids.
- Proteins.
- Nucleic acids.
- Hydrophobic interactions burying nonpolar R-groups in the interior and hydrophilic interactions exposing polar R-groups on the surface.
- Extensive disulfide bonds throughout the entire structure.
- Continuous alpha-helix formation.
- The rigid backbone structure.
- Peptide bonds.
- Glycosidic bonds.
- Hydrogen bonds, ionic bonds, and hydrophobic interactions.
- Phosphodiester bonds.
- Nucleic acid structure.
- Carbohydrate branching.
- Protein folding and function.
- Lipid bilayer formation.
- The active site, but irreversibly.
- A site distinct from the active site, causing a conformational change that reduces catalytic efficiency.
- The substrate before it binds to the enzyme.
- Both the active site and the allosteric site simultaneously.
- Binds to a site other than the active site, changing the enzyme's shape.
- Binds reversibly to the active site, competing with the substrate.
- Forms a permanent covalent bond with the active site.
- Increases the enzyme's affinity for its substrate.
- Can catalyze a wide variety of reactions.
- Have active sites that bind to a very limited range of substrates.
- Are unaffected by changes in pH.
- Are equally active at all temperatures.
- It causes the enzyme to denature.
- It increases the chances of enzyme-substrate collisions until all active sites are saturated.
- It directly increases the enzyme's optimal temperature.
- It decreases the activation energy of the reaction.
- Increased enzyme activity.
- Denaturation of the enzyme due to changes in ionization of amino acid side chains.
- Formation of stronger peptide bonds.
- Increased substrate specificity.
- High temperatures always denature the active site.
- Low temperatures always activate the enzyme.
- Temperature affects the kinetic energy of molecules, influencing the rate of enzyme-substrate collisions and, at high temperatures, the protein's tertiary structure.
- Enzymes are only active at extreme temperatures.
- The enzyme's active site is rigid and unchanging.
- The enzyme's active site undergoes a conformational change upon substrate binding, optimizing the fit.
- The substrate changes its shape to fit the active site.
- Enzymes are not specific to their substrates.
Top Contributors
- 18350 Points
- 24 Points
7 Points